
(cosx-1)*(tgx+корень из 3)*корень из cosx =0


Ответы на вопрос

cosx=1
x=2pi*n
2)tgx+корень из 3=0
tgx= - корень из 3
x=-pi/3+pi*k
3)корень из cosx=0
cosx=0
x=pi/2+pi*m



To solve the equation , we need to find the values of that satisfy the equation. To do that, we'll set each factor equal to zero and solve for :
: Adding 1 to both sides, we get . The solutions to this equation are , where is an integer.
: Subtracting from both sides, we get . The solutions to this equation are , where is an integer.
: To have a real solution for , must be non-negative, so . Since can't be negative, this equation doesn't provide any additional solutions.
Now, we need to find the common solutions among the solutions obtained from the three equations above. So, let's find the intersection:
The solutions from the first equation are . The solutions from the second equation are .
To find the common solutions, we need to find the values of that satisfy both equations. The solutions that satisfy both equations are the multiples of :
, where is an integer.
These are the solutions to the given equation .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili