
6 sin²x + 6 sin2x = 0


Ответы на вопрос

6Sin²x + 6Sin2x = 0
Sin²x + Sin2x = 0
Sin²x + 2SinxCosx = 0
Sinx(Sinx + 2Cosx) = 0
1) Sinx = 0
x = πn, n ∈ Z
2) Sinx + 2Cosx = 0
Разделим почленно на Cosx ≠ 0 , получим :
tgx + 2 = 0
tgx = - 2
x = arctg(-2) + πn , n ∈ Z
x = - arctg2 + πn , n ∈ Z



To solve the equation 6 sin²x + 6 sin2x = 0, we can first factor out a common term:
6 sin²x + 6 sin2x = 0
Factor out 6: 6(sin²x + sin2x) = 0
Now, we need to factor the expression inside the parentheses. To do this, we can use a trigonometric identity:
sin2x = 2sinx cosx
Now, let's rewrite the equation with this substitution:
6(sin²x + 2sinx cosx) = 0
Next, we can factor the expression inside the parentheses further:
sin²x + 2sinx cosx = 0
Now, we can apply another trigonometric identity:
sin²x = 1 - cos²x
Now, the equation becomes:
1 - cos²x + 2sinx cosx = 0
We can rearrange the terms:
cos²x - 2sinx cosx - 1 = 0
This is now a quadratic equation in terms of cosx. Let's solve for cosx using the quadratic formula:
cosx = [ -(-2sinx) ± √((-2sinx)² - 4(1)(-1)) ] / 2(1)
Simplify further:
cosx = [2sinx ± √(4sin²x + 4)] / 2
cosx = [2sinx ± 2√(sin²x + 1)] / 2
cosx = sinx ± √(sin²x + 1)
Now, we have two possible solutions for cosx:
- cosx = sinx + √(sin²x + 1)
- cosx = sinx - √(sin²x + 1)
To find the solutions for x, we need to consider the range of values for sinx and cosx, which are both bounded between -1 and 1.
For the first solution: sinx + √(sin²x + 1) Since sinx is bounded between -1 and 1, sin²x is always positive. Therefore, sin²x + 1 will always be greater than 1, and its square root will be a complex number. Thus, this solution is not valid for real values of x.
For the second solution: sinx - √(sin²x + 1) Here, sin²x + 1 will be greater than or equal to 1. So, its square root will be a real number. Since sinx is bounded between -1 and 1, sinx - √(sin²x + 1) can take values between -2 and 0.
Hence, the valid solution for the equation is:
cosx = sinx - √(sin²x + 1)
Please note that the original equation you provided might have been a bit different than what you intended due to the formatting. If you meant something else, please clarify, and I'd be happy to help further.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili