
Решить уравнение (sin x + sin 3x)/(cos x + cos 3x) = 0


Ответы на вопрос

2sin((3x+x)/2)*cos((3x-x)/2)+2cos((3x+x)/2*cos(3x-x)/2=0



To solve the equation (sin x + sin 3x) / (cos x + cos 3x) = 0, we need to find the values of x that make the expression equal to zero. To do that, let's first simplify the expression:
(sin x + sin 3x) / (cos x + cos 3x) = 0
To simplify, let's factor out sin x from the numerator and cos x from the denominator:
sin x * (1 + 3cos^2(x)) / cos x * (1 + 3sin^2(x)) = 0
Now, to find the values of x that make this expression equal to zero, we have two possibilities:
- The numerator is equal to zero: sin x * (1 + 3cos^2(x)) = 0
This means that sin x = 0 or 1 + 3cos^2(x) = 0.
If sin x = 0, then x can take the values of 0, π, 2π, 3π, and so on.
If 1 + 3cos^2(x) = 0, then 3cos^2(x) = -1, which has no real solutions since the cosine function ranges from -1 to 1, and 3cos^2(x) will always be positive or zero.
- The denominator is equal to zero: cos x * (1 + 3sin^2(x)) = 0
This means that cos x = 0 or 1 + 3sin^2(x) = 0.
If cos x = 0, then x can take the values of π/2, 3π/2, 5π/2, and so on.
If 1 + 3sin^2(x) = 0, then 3sin^2(x) = -1, which again has no real solutions since the sine function ranges from -1 to 1, and 3sin^2(x) will always be positive or zero.
Now, let's combine the solutions from both cases:
x = 0, π, 2π, 3π, ... (for sin x = 0) x = π/2, 3π/2, 5π/2, ... (for cos x = 0)
These are the values of x that satisfy the given equation.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili