
Cos (π/6-a) - sin (a-π/6). помогите пж :)


Ответы на вопрос

использую формулу cos(a-b),следственно во втором sin(a-b).
Удачи.



Sure, I'd be happy to help you simplify the expression:
We'll use the trigonometric identities for cosine and sine of the difference of two angles:
Cosine of the difference of two angles: cos(x - y) = cos(x) * cos(y) + sin(x) * sin(y)
Sine of the difference of two angles: sin(x - y) = sin(x) * cos(y) - cos(x) * sin(y)
Now, let's apply these identities to your expression:
cos(π/6 - a) - sin(a - π/6)
Step 1: Identify the angles: x = π/6 y = a
Step 2: Plug the angles into the identities:
cos(π/6 - a) = cos(π/6) * cos(a) + sin(π/6) * sin(a) sin(a - π/6) = sin(a) * cos(π/6) - cos(a) * sin(π/6)
Step 3: Simplify the expressions for cos(π/6) and sin(π/6):
cos(π/6) = √3/2 sin(π/6) = 1/2
Step 4: Substitute the simplified expressions back into the identities:
cos(π/6 - a) = (√3/2) * cos(a) + (1/2) * sin(a) sin(a - π/6) = sin(a) * (√3/2) - cos(a) * (1/2)
Step 5: Rearrange the terms:
cos(π/6 - a) = (√3/2) * cos(a) + (1/2) * sin(a) sin(a - π/6) = (1/2) * sin(a) - (√3/2) * cos(a)
Finally, the simplified expression is:
cos(π/6 - a) - sin(a - π/6) = (√3/2) * cos(a) + (1/2) * sin(a) - ((1/2) * sin(a) - (√3/2) * cos(a))
Now, we can see that the (1/2) * sin(a) terms cancel each other out, leaving us with:
cos(π/6 - a) - sin(a - π/6) = (√3/2) * cos(a) - (√3/2) * cos(a)
The two terms with cos(a) also cancel each other out, resulting in a simplified expression of:
cos(π/6 - a) - sin(a - π/6) = 0
So the final answer is 0.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili