
Решите уравнение: 1) 3x^2 − 15 = 0; 3) x^2 + 8x − 9 = 0; 5) x^2 − 6x − 3 = 0; 2) 4x^2 − 7x = 0;
4) 12x^2 − 5x − 2 = 0; 6) x^2 − 3x + 11 = 0.

Ответы на вопрос

1) 3x² - 15 = 0
3x² = 15
x² = 5
x₁ = - √ 5 x₂ = √5
2) 4x² - 7x = 0
x(4x - 7) = 0
или x₁ = 0 или 4x - 7 = 0
4x = 7
x₂ = 1,75
3) x² + 8x - 9 = 0
По теореме Виета : x₁ + x₂ = - 8 x₁ *x₂ = - 9 , значит
x₁ = - 9 x₂ = 1
4) 12x² - 5x - 2 = 0
D = (- 5)² - 4 * 12 * (- 2) = 25 + 96 = 121 = 11²
5) x² - 6x - 3 = 0
D = (- 6)² - 4 * (- 3) = 36 + 12 = 48 = (4√3)²
6) x² - 3x + 11 = 0
D = (- 3)² - 4 * 11 = 9 - 44 < 0
решений нет



To solve these quadratic equations, we can use the quadratic formula:
For an equation of the form: ax^2 + bx + c = 0, the quadratic formula is given by:
x = (-b ± √(b^2 - 4ac)) / 2a
Let's solve each equation one by one:
- 3x^2 − 15 = 0
a = 3, b = 0, c = -15
x = (0 ± √(0^2 - 4 * 3 * -15)) / 2 * 3 x = (±√180) / 6 x = (±6√5) / 6 x = ±√5
So the solutions are x = √5 and x = -√5.
- 4x^2 − 7x = 0
a = 4, b = -7, c = 0
x = (7 ± √((-7)^2 - 4 * 4 * 0)) / 2 * 4 x = (7 ± √(49)) / 8 x = (7 ± 7) / 8
For x = (7 + 7) / 8, x = 14 / 8 = 7 / 4 For x = (7 - 7) / 8, x = 0
So the solutions are x = 7/4 and x = 0.
- x^2 + 8x − 9 = 0
a = 1, b = 8, c = -9
x = (-8 ± √(8^2 - 4 * 1 * -9)) / 2 * 1 x = (-8 ± √(64 + 36)) / 2 x = (-8 ± √100) / 2 x = (-8 ± 10) / 2
For x = (-8 + 10) / 2, x = 2 / 2 = 1 For x = (-8 - 10) / 2, x = -18 / 2 = -9
So the solutions are x = 1 and x = -9.
- 12x^2 − 5x − 2 = 0
a = 12, b = -5, c = -2
x = (5 ± √((-5)^2 - 4 * 12 * -2)) / 2 * 12 x = (5 ± √(25 + 96)) / 24 x = (5 ± √121) / 24 x = (5 ± 11) / 24
For x = (5 + 11) / 24, x = 16 / 24 = 2 / 3 For x = (5 - 11) / 24, x = -6 / 24 = -1 / 4
So the solutions are x = 2/3 and x = -1/4.
- x^2 − 6x − 3 = 0
a = 1, b = -6, c = -3
x = (6 ± √((-6)^2 - 4 * 1 * -3)) / 2 * 1 x = (6 ± √(36 + 12)) / 2 x = (6 ± √48) / 2 x = (6 ± 4√3) / 2 x = 3 ± 2√3
So the solutions are x = 3 + 2√3 and x = 3 - 2√3.
- x^2 − 3x + 11 = 0
a = 1, b = -3, c = 11
x = (3 ± √((-3)^2 - 4 * 1 * 11)) / 2 * 1 x = (3 ± √(9 - 44)) / 2 x = (3 ± √(-35)) / 2
Since the discriminant (b^2 - 4ac) is negative, the solutions involve complex numbers. We can write them in the form:
x = (3 + √35i) / 2 and x = (3 - √35i) / 2, where i is the imaginary unit (i^2 = -1).
So the solutions are x = (3 + √35i) / 2 and x = (3 - √35i) / 2.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili