
Вопрос задан 21.07.2023 в 09:54.
Предмет Алгебра.
Спрашивает Перевезенцев Кирилл.
Найти первообразную f(x)=6x-8


Ответы на вопрос

Отвечает Топоев Лев.
F(x)=3x²-8x
vvvvvvvvvvv



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти первообразную функции f(x) = 6x - 8, нужно найти такую функцию F(x), производная которой равна данной функции f(x).
Итак, для нахождения первообразной F(x), возьмем интеграл от функции f(x) по переменной x:
∫(6x - 8) dx
Интегрируем каждый член отдельно:
∫6x dx - ∫8 dx
Интегрируем:
= 6 * ∫x dx - 8 * ∫1 dx
Теперь найдем интеграл каждого члена:
∫x dx = (x^2)/2 + C1, где C1 - произвольная константа интегрирования.
∫1 dx = x + C2, где C2 - произвольная константа интегрирования.
Таким образом, первообразная F(x) для функции f(x) = 6x - 8:
F(x) = (6 * ((x^2)/2 + C1)) - (8 * (x + C2))
F(x) = 3x^2 + 6C1 - 8x - 8C2
Где C1 и C2 - произвольные константы интегрирования.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili