
125^x > 25^(x^2-1) папаките поже


Ответы на вопрос





To solve the inequality , we need to compare the bases and exponents on both sides of the inequality. Let's simplify the inequality step by step:
Step 1: Write the bases with the same exponent (common base) on both sides of the inequality.
Recall that can be written as , and can be written as . So, our inequality becomes:
Step 2: Simplify the exponents.
Step 3: Apply the property of exponents, which states that for any positive , , and :
Using this property, we can simplify further:
Step 4: Since the bases are the same (both are ), we can compare the exponents directly:
Step 5: Move all terms to one side to set the inequality to zero:
Now, we have a quadratic inequality. To find the solution, we need to determine the values of that make the inequality true. One way to do this is by finding the critical points and testing intervals.
Step 6: Find the critical points by setting the expression inside the inequality to zero:
However, the discriminant () of this quadratic equation is negative, indicating that there are no real roots. Since the coefficient of the term is positive (), the parabola opens upward, meaning it's positive for all .
Step 7: Determine the sign of the quadratic expression for different intervals:
Since the quadratic expression is positive for all , the inequality has no solutions in the real number domain.
In conclusion, the original inequality has no real solutions for .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili