
Решить уравнение sinx=-1


Ответы на вопрос

Частный случай
х=3П/2+2Пн



To solve the equation sin(x) = -1, we need to find the values of x that satisfy this equation.
In the unit circle, the sine function takes on its maximum value of 1 at π/2 (90 degrees) and its minimum value of -1 at -π/2 (-90 degrees). Since we are looking for sin(x) = -1, we want to find the angles where the sine function equals -1.
The angle -π/2 (-90 degrees) and 3π/2 (270 degrees) have a sine of -1. Additionally, any angle that is coterminal to these angles (i.e., can be obtained by adding or subtracting multiples of 2π) will also have a sine of -1.
So, the solutions to the equation sin(x) = -1 are: x = -π/2 + 2πn, where n is an integer.
For example, when n = 0, x = -π/2 + 2π(0) = -π/2 and when n = 1, x = -π/2 + 2π(1) = 3π/2.
Keep in mind that there are infinitely many solutions, as there are an infinite number of integers for n. The solutions are all the angles that have a sine of -1, which repeat every 2π radians (360 degrees).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili