
Cos⁴a+sin²a×cos²a упроситите и найдите его значиние при tga=2


Ответы на вопрос




To simplify the expression cos⁴a + sin²a × cos²a, we can use trigonometric identities to rewrite the terms in a more manageable form.
Trigonometric Identity:
- sin²a = 1 - cos²a
Now, let's simplify the expression:
cos⁴a + sin²a × cos²a
Substitute sin²a with (1 - cos²a):
cos⁴a + (1 - cos²a) × cos²a
Expand the second term:
cos⁴a + cos²a - cos⁴a
Now, the two cos⁴a terms cancel out:
cos²a
Now that the expression is simplified to cos²a, let's find its value when tan(a) = 2.
Given that tan(a) = 2, we can use the following trigonometric identity:
tan(a) = sin(a) / cos(a)
Since we know that tan(a) = 2, we can set up the following equation:
2 = sin(a) / cos(a)
Now, we can use the Pythagorean identity to relate sin(a) and cos(a):
sin²(a) + cos²(a) = 1
Since we have sin(a) / cos(a) = 2, we can rewrite sin²(a) as (2cos(a))²:
(2cos(a))² + cos²(a) = 1
Expand the equation:
4cos²(a) + cos²(a) = 1
Combine like terms:
5cos²(a) = 1
Now, solve for cos²(a):
cos²(a) = 1 / 5
Finally, find the value of cos(a):
cos(a) = ±√(1 / 5)
Since cosine is positive in the first and fourth quadrants, we take the positive square root:
cos(a) = √(1 / 5)
Now, the simplified expression cos²a is:
cos²a = 1 / 5
Thus, the simplified expression is 1 / 5, and its value when tan(a) = 2 is also 1 / 5.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili