
Вопрос задан 19.07.2023 в 19:06.
Предмет Алгебра.
Спрашивает Хмызова Алёна.
6sin^2(pi-x)-1,5cos(pi/2-2x)-cos^2x=1


Ответы на вопрос

Отвечает Милкович Аня.
6sin²(π - x) - 1,5cos(π/2 - 2x) - cos²x = 1
6sin²x - 1,5sin2x - cos²x = 1
6sin²x - 1,5•2•sinx•cosx - cos²x = sin²x + cos²x
5sin²x - 3•sinx•cosx - 2cos²x = 0
Разделим обе части cos²x ≠ 0
5tg²x - 3tgx - 2 = 0
Замена tgx = a, a ∈ R
5a² - 3a - 2 = 0
D = (-3)² - 4•5•(-2) = 9 + 40 = 49
a₁ = (3 - 7)/10 = - 4/10 = - 2/5 ⇒ tgx = - 2/5 ⇔ x = - arctg(2/5) + πn, n ∈ Z
a₂ = (3 + 7)/10 = 10/10 = 1 ⇒ tgx = 1 ⇔ x = π/4 + πk, k ∈ Z
ОТВЕТ: - arctg(2/5) + πn ; π/4 + πk , n , k ∈ Z



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To solve the equation , we'll simplify the trigonometric expressions step by step and then find the solutions for .
Step 1: Use Trigonometric Identities We can use the following trigonometric identities:
Step 2: Rewrite the equation using the above identities The equation becomes:
Step 3: Combine like terms
Step 4: Use double angle identity for sine
Step 5: Use the Pythagorean identity
Step 6: Combine terms again
Step 7: Rearrange the equation
Now, we have a quadratic-like equation in terms of . Let's denote as :
Step 8: Solve for We can use the quadratic formula to solve for :
where , , and .
Step 9: Simplify further
So we have two possible values for :