Вопрос задан 19.07.2023 в 03:59. Предмет Алгебра. Спрашивает Гильфанова Марьям.

Знайти суму натуральних, чисел кратних 5, не більше за 100

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аккулов Данил.

Эти числа образуют арифметическую прогрессию, в которой :

a_{1}=5\\\\d=5\\\\a_{20}=100\\\\n=20\\\\S_{20}=\frac{a_{1}+a_{20}}{2}*20=(5+100)*10=1050

0 0
Отвечает Смирнов Евгений.

Дано:

5a≤100

Найти:

S

Решение:

Это арифметическая прогрессия.

a_{1}=5\\ d=5\\n= a_{n} : a= 100/5=20\\S=\dfrac{(2a_{1}+d(n-1) )n}{2}= \dfrac{(10+5*19)*20}{2} = (10+95) * 10 = 1050

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти суму натуральних чисел, кратних 5, не більше за 100, потрібно пройтися по всім натуральним числам меншим або рівним 100 і додати до суми ті, які кратні 5.

Ось код на мові Python, який здійснює цю операцію:

python
sum = 0 for i in range(1, 101): if i % 5 == 0: sum += i print(sum)

В результаті виконання цього коду ми отримаємо суму натуральних чисел, кратних 5, не більше за 100. У цьому випадку сума буде дорівнювати 1050.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос