
4sin3x+sin5x-2sinx cos2x=0


Ответы на вопрос

Ответ:



To solve the trigonometric equation 4sin(3x) + sin(5x) - 2sin(x)cos(2x) = 0, we will use trigonometric identities and algebraic manipulation. Let's go step by step:
Step 1: Apply the double angle identity for cosine, sin(2x) = 2sin(x)cos(x): 4sin(3x) + sin(5x) - 2sin(x)(2cos^2(x) - 1) = 0
Step 2: Expand the expression: 4sin(3x) + sin(5x) - 4sin(x)cos^2(x) + 2sin(x) = 0
Step 3: Apply the multiple angle identity for sine, sin(3x) = 3sin(x) - 4sin^3(x), and sin(5x) = 5sin(x) - 20sin^3(x): 4(3sin(x) - 4sin^3(x)) + (5sin(x) - 20sin^3(x)) - 4sin(x)cos^2(x) + 2sin(x) = 0
Step 4: Distribute and combine like terms: 12sin(x) - 16sin^3(x) + 5sin(x) - 20sin^3(x) - 4sin(x)cos^2(x) + 2sin(x) = 0
Step 5: Combine the sine terms: 17sin(x) - 36sin^3(x) - 4sin(x)cos^2(x) + 2sin(x) = 0
Step 6: Factor out sin(x): sin(x)(17 - 36sin^2(x) - 4cos^2(x) + 2) = 0
Step 7: Apply the Pythagorean identity, cos^2(x) = 1 - sin^2(x): sin(x)(17 - 36sin^2(x) - 4(1 - sin^2(x)) + 2) = 0
Step 8: Simplify the expression: sin(x)(17 - 36sin^2(x) - 4 + 4sin^2(x) + 2) = 0
Step 9: Combine like terms: sin(x)(15 - 32sin^2(x)) = 0
Now, we have two possibilities for the equation to be true:
- sin(x) = 0
- 15 - 32sin^2(x) = 0
Solving for sin(x) = 0, we get x = 0, π, 2π, 3π, ...
Solving for 15 - 32sin^2(x) = 0, we get:
32sin^2(x) = 15
sin^2(x) = 15/32
Taking the square root of both sides:
sin(x) = ±√(15/32)
sin(x) = ±√(15)/√(32)
sin(x) ≈ ±0.608
Since sine values fall between -1 and 1, the equation sin(x) ≈ 0.608 has solutions within that range.
To summarize, the solutions to the equation 4sin(3x) + sin(5x) - 2sin(x)cos(2x) = 0 are:
- x = 0, π, 2π, 3π, ... (where sin(x) = 0)
- x ≈ arcsin(√(15)/√(32)) + 2πk or x ≈ π - arcsin(√(15)/√(32)) + 2πk (where k is an integer)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili