
Вопрос задан 16.07.2023 в 15:31.
Предмет Алгебра.
Спрашивает Куличенко Андрей.
Можно ли представить одночлен A в виде квадрата некоторого одночлена B, если A=8a^8? Если можно, то
как?

Ответы на вопрос

Отвечает Рей Елизавета.
Ответ:
Объяснение:B=



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Да, можно представить одночлен A = 8a^8 в виде квадрата некоторого одночлена B.
Для этого мы можем воспользоваться следующим соотношением:
A = (sqrt(A))^2,
где sqrt(A) обозначает квадратный корень из A.
Применяя это к нашему случаю, получаем:
A = (sqrt(8a^8))^2.
Теперь разложим подкоренное выражение:
sqrt(8a^8) = sqrt(2^3 * (a^4)^2) = sqrt((2a^4)^2) = 2a^4.
Таким образом, мы можем представить A в виде квадрата B:
A = (2a^4)^2 = 4a^8.
Итак, одночлен A = 8a^8 можно представить в виде квадрата B = 4a^8.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili