
Алгебра, примеры Реши уравнение 2,25x6−3,13x6+0,89x6=0,01?Значение выражения 0,3bc3+2bc3+cbc2
равно?Запиши данный одночлен 0,064c^6 в виде куба некоторого одночленаМожно ли представить одночлен A в виде квадрата некоторого одночлена B, если A=8c8? Если можно, то как?Найди произведение одночленов (−4,2a^4b^3c)^2⋅(−5abc)Пишите ТОЛЬКО ответы

Ответы на вопрос

1.
2.



Ответ:
1000-7 -------77777771000



Solving the equation 2.25x6 - 3.13x6 + 0.89x6 = 0.01
To solve the equation 2.25x^6 - 3.13x^6 + 0.89x^6 = 0.01, we can combine like terms on the left side of the equation:
(2.25 - 3.13 + 0.89)x^6 = 0.01
Simplifying further:
(0.01)x^6 = 0.01
Now, we can solve for x by dividing both sides of the equation by 0.01:
x^6 = 0.01 / 0.01
x^6 = 1
To find the value of x, we need to take the sixth root of both sides of the equation:
x = ∛1
Therefore, the solution to the equation 2.25x^6 - 3.13x^6 + 0.89x^6 = 0.01 is x = 1.
Value of the expression 0.3bc^3 + 2bc^3 + cbc^2
To find the value of the expression 0.3bc^3 + 2bc^3 + cbc^2, we can combine like terms:
0.3bc^3 + 2bc^3 + cbc^2 = (0.3 + 2 + 1)bc^3 + cbc^2
Simplifying further:
(3.3)bc^3 + cbc^2 = 3.3bc^3 + cbc^2
Therefore, the value of the expression 0.3bc^3 + 2bc^3 + cbc^2 is 3.3bc^3 + cbc^2.
Writing the given monomial 0.064c^6 as the cube of another monomial
To write the given monomial 0.064c^6 as the cube of another monomial, we need to find a monomial whose cube is equal to 0.064c^6.
Taking the cube root of 0.064c^6, we get:
∛(0.064c^6) = 0.4c^2
Therefore, the given monomial 0.064c^6 can be written as the cube of the monomial 0.4c^2.
Can the monomial A be represented as the square of another monomial B if A = 8c^8? If yes, how?
To determine if the monomial A can be represented as the square of another monomial B, we need to check if the exponent of each variable in A is even.
Given A = 8c^8, the exponent of c is 8, which is even. Therefore, A can be represented as the square of another monomial B.
To find B, we take the square root of A:
√(8c^8) = 2c^4
Therefore, if A = 8c^8, it can be represented as the square of the monomial 2c^4.
Finding the product of the monomials (-4.2a^4b^3c)^2 * (-5abc)
To find the product of the monomials (-4.2a^4b^3c)^2 * (-5abc), we can multiply the coefficients and combine the variables:
(-4.2a^4b^3c)^2 * (-5abc) = (-4.2)^2 * (a^4)^2 * (b^3)^2 * c^2 * (-5) * a * b * c
Simplifying further:
(17.64) * (a^8) * (b^6) * c^2 * (-5) * a * b * c = -88.2a^9b^7c^3
Therefore, the product of the monomials (-4.2a^4b^3c)^2 * (-5abc) is -88.2a^9b^7c^3.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili