Вопрос задан 15.07.2023 в 14:01. Предмет Алгебра. Спрашивает Ерофеев Серёжа.

Найдите корень уравнения 5x²+15=0 . Если уравнение имеет более одного корня, в ответ запишите

меньший из корней.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Григорьева Дарья.

Объяснение:

5x²+15 = 0;

x² = -15/5 = -3;

ответ : нет решений .

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения корней уравнения 5x2+15=05x^2 + 15 = 0 можно применить квадратное уравнение. Для начала, вычтем 15 с обеих сторон уравнения:

5x2=155x^2 = -15

Затем разделим обе стороны на 5:

x2=3x^2 = -3

Теперь возьмём квадратный корень от обеих сторон:

x=±3x = \pm\sqrt{-3}

Здесь возникает проблема, так как квадратный корень из отрицательного числа не определён в области действительных чисел. Это означает, что уравнение 5x2+15=05x^2 + 15 = 0 не имеет действительных корней.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос