
ПОМОГИТЕ ПОЖАЛУЙСТА, напишите полное решение + график 1) Найти площадь фигуры, ограниченной
параболой y= -x^2+4x-3 и прямой, проходящей через точки (1,0) и (0,-3) 2) Найти площадь фигуры, ограниченной графиком функции y=x^3 и прямыми y=1, x=-2

Ответы на вопрос

Ответ:1/6; 4,25
Объяснение:Всё решено в прикреплённом файле.




- Для решения задачи найдем точки пересечения параболы и прямой.
Уравнение параболы: y = -x^2 + 4x - 3 Уравнение прямой: y = kx + b, где k - наклон прямой, b - свободный член
Используя точки (1, 0) и (0, -3), подставим их в уравнение прямой: 0 = k * 1 + b (1) -3 = k * 0 + b (2)
Из уравнения (2) получаем b = -3. Подставим b в уравнение (1): 0 = k * 1 - 3 k = 3
Теперь найдем точки пересечения параболы и прямой: -x^2 + 4x - 3 = 3x - 3 x^2 - x = 0 x(x - 1) = 0
Таким образом, получаем две точки пересечения: x = 0 и x = 1.
Для нахождения площади фигуры ограниченной параболой и прямой, нужно вычислить определенный интеграл от разности функций на отрезке [0, 1].
Функция, ограничивающая фигуру сверху, это прямая: y = 3x - 3. Функция, ограничивающая фигуру снизу, это парабола: y = -x^2 + 4x - 3.
Площадь фигуры S вычисляется следующим образом:
S = ∫[0,1] (3x - 3) - (-x^2 + 4x - 3) dx
S = ∫[0,1] (3x - 3 + x^2 - 4x + 3) dx
S = ∫[0,1] (x^2 - x) dx
S = [x^3/3 - x^2/2] [0,1]
S = (1^3/3 - 1^2/2) - (0^3/3 - 0^2/2)
S = (1/3 - 1/2) - (0/3 - 0/2)
S = (2/6 - 3/6) - (0 - 0)
S = -1/6
Таким образом, площадь фигуры ограниченной параболой y = -x^2 + 4x - 3 и прямой, проходящей через точки (1,0) и (0,-3), равна -1/6.
Чтобы построить график, необходимо нарисовать параболу и прямую на одной координатной плоскости.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili