
(х-3)^2-2х^2=3=(х+1)^2


Ответы на вопрос

Ответ:
x1=0
x2= -3
Объяснение:
(x-3)²-2x²=3=(x+1)²
(x-2)²-2x²-3-(x+1)²=0
x²-4x-4-2x²-3-x²-2x-2=0
-2x²-6x-6=0
2x²+6x+6=0
поделим на 2
x²+3x+3=0
x²+3x=0
x(x+3)=0
1. x=0
2. x+3=0
x=-3



It seems there might be a typographical error in the equation you provided, as it currently contains two equal signs ("=") in a row. An equation typically has only one equal sign, indicating that both sides are equal. Let's assume that the correct equation is:
(х-3)^2 - 2х^2 = (х+1)^2
To solve this equation, we'll start by expanding the square terms and then simplifying the equation:
Step 1: Expand the squares (х-3)(х-3) - 2х^2 = (х+1)(х+1)
Step 2: Multiply the binomials (x^2 - 6x + 9) - 2x^2 = (x^2 + 2x + 1)
Step 3: Combine like terms x^2 - 6x + 9 - 2x^2 = x^2 + 2x + 1
Step 4: Move all terms to one side of the equation x^2 - 2x^2 - x^2 - 6x + 2x + 9 - 1 = 0
Step 5: Simplify further -2x^2 - 4x + 8 = 0
Step 6: Divide the whole equation by -2 to simplify further x^2 + 2x - 4 = 0
Now, this is a quadratic equation in the form of ax^2 + bx + c = 0, where a = 1, b = 2, and c = -4. To solve the quadratic equation, you can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / 2a
Plugging in the values:
x = (-(2) ± √(2^2 - 4 * 1 * -4)) / 2 * 1 x = (-2 ± √(4 + 16)) / 2 x = (-2 ± √20) / 2 x = (-2 ± 2√5) / 2
Now, we can split this into two solutions:
x = (-2 + 2√5) / 2 x = -1 + √5
x = (-2 - 2√5) / 2 x = -1 - √5
So the two solutions for the given equation are x = -1 + √5 and x = -1 - √5.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili