7cos^x-8sinxcosx+sin^x=0
Ответы на вопрос

To solve the equation 7cos^x - 8sinx*cosx + sin^x = 0, we can simplify it and use trigonometric identities to rewrite the equation in terms of a single trigonometric function.
Let's start by using the Pythagorean identity sin^2(x) + cos^2(x) = 1 to rewrite the equation:
7cos^x - 8sinx*cosx + sin^x = 0
Dividing the entire equation by cos^x, we get:
7 - 8tanx + sin^x/cos^x = 0
Using the identity tanx = sinx/cosx, we can substitute it in the equation:
7 - 8tanx + tanx*sinx/cosx = 0
Now, let's multiply the entire equation by cosx to get rid of the denominators:
7cosx - 8sinx + tanx*sinx = 0
Next, we can rewrite tanxsinx as sin^2(x)/cosx using the identity tanxsinx = sin^2(x)/cosx:
7cosx - 8sinx + sin^2(x)/cosx = 0
Multiplying the entire equation by cosx, we obtain:
7cos^2(x) - 8sinx*cosx + sin^2(x) = 0
Using the Pythagorean identity cos^2(x) + sin^2(x) = 1, we can simplify further:
7 - 8sinx*cosx + 1 = 0
Rearranging the terms, we have:
8sinx*cosx = 8
sinx*cosx = 1
Since sinx*cosx = 1, this implies that either sinx = 1 and cosx = 1 or sinx = -1 and cosx = -1.
For sinx = 1 and cosx = 1, x can be any angle in the form x = 2nπ, where n is an integer.
For sinx = -1 and cosx = -1, x can be any angle in the form x = (2n + 1)π/2, where n is an integer.
Therefore, the solutions to the equation 7cos^x - 8sinx*cosx + sin^x = 0 are:
x = 2nπ or x = (2n + 1)π/2, where n is an integer.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
