
Найти производную функци y=3x4-4/x2-10


Ответы на вопрос

Ответ:
если я вас правильно понял ваша функция имеет следующий вид: y=3x⁴-4/x²-10
действуем по формуле y=f'(x)g(x)-f(x)g'(x)/g(x)²
y=12x³(x²-10)-(3x⁴-4)2x/(x²-10)²=6x^5-120x³+8x/(x²-10)²



Для нахождения производной функции y = 3x^4 - 4/x^2 - 10, мы будем использовать правила дифференцирования элементарных функций.
Первым шагом найдем производные каждого слагаемого по отдельности:
Производная слагаемого 3x^4: d/dx (3x^4) = 4 * 3x^(4-1) = 12x^3.
Производная слагаемого -4/x^2: d/dx (-4/x^2) = -4 * d/dx (x^(-2)) = -4 * (-2x^(-2-1)) = 8/x^3.
Производная слагаемого -10: Поскольку константа -10 не зависит от переменной x, ее производная равна нулю: d/dx (-10) = 0.
Теперь сложим производные всех слагаемых, чтобы получить производную функции y по x:
dy/dx = 12x^3 + 8/x^3 + 0.
Таким образом, производная функции y = 3x^4 - 4/x^2 - 10 равна dy/dx = 12x^3 + 8/x^3.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili