
(1+ y^2)dx – Vx*dy = 0V-это корень


Ответы на вопрос

уравнение с разделяющимися переменными:



I'm not entirely sure what you mean by "V-это корень" in the context of the given expression. The expression (1+ y^2)dx – Vx*dy = 0 is a first-order ordinary differential equation (ODE) that relates the variables x and y. The equation is in the form of a first-order linear ODE.
To solve this differential equation, we can rearrange it as follows:
(1+ y^2)dx = Vx*dy
Now, we can integrate both sides of the equation to find the general solution. However, without a specific initial condition or boundary condition, the solution will be in the form of an implicit function.
Integrating both sides:
∫(1+ y^2)dx = ∫Vx*dy
The integral on the left side with respect to x will be:
x + y^2x = ∫Vxdy
And we can integrate the right side with respect to y:
x + y^2*x = V∫xdy
The integral of x with respect to y is simply xy:
x + y^2*x = Vxy + C
where C is the constant of integration.
So, the general solution to the given differential equation is:
x + y^2*x = Vxy + C
If you have a specific initial condition or boundary condition, you can use it to determine the value of the constant C and obtain a unique solution. Otherwise, the solution remains implicit.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili