
Dx + (xy - y³)dy = 0


Ответы на вопрос

Ответ снизу))))))))))))))





The given equation is a first-order ordinary differential equation. It is not in a standard form and does not appear to be separable or exact. However, we can try to solve it using an integrating factor.
To start, let's rearrange the equation:
dx + (xy - y³)dy = 0
To make it look more like a standard form, we can rewrite it as:
dx + xydy - y³dy = 0
Now, let's focus on the term involving y and try to find an integrating factor for it. The integrating factor is usually denoted as μ(x) and is defined as:
μ(x) = e^(∫P(x)dx)
where P(x) is the coefficient of dy. In this case, P(x) = x.
So, let's calculate the integrating factor:
μ(x) = e^(∫x dx) = e^(x²/2) [applying the integral]
Now, we multiply the entire equation by the integrating factor μ(x):
e^(x²/2)dx + xye^(x²/2)dy - y³e^(x²/2)dy = 0
Now, we need to check if the left-hand side of the equation can be written as the total derivative of some function with respect to y. Let's inspect the terms:
d(e^(x²/2)y) = e^(x²/2)dy + xe^(x²/2)dy
The left-hand side of our equation has similar terms, but with an additional -y³e^(x²/2)dy term. So, we need to find a function that has y³e^(x²/2)dy as its total derivative with respect to y.
Let's integrate y³e^(x²/2)dy with respect to y:
∫y³e^(x²/2)dy = (1/4)e^(x²/2)y⁴ + C(x)
where C(x) is the constant of integration with respect to y. We can now rewrite our equation using this result:
d(e^(x²/2)y) - (1/4)e^(x²/2)y⁴dy + C(x) = 0
Now, this equation can be written as a total derivative with respect to y:
d(e^(x²/2)y - (1/4)e^(x²/2)y⁴ + C(x)y) = 0
At this point, we can consider the equation to be equal to a constant, say K:
d(e^(x²/2)y - (1/4)e^(x²/2)y⁴ + C(x)y) = K
This is the general solution to the given differential equation. It involves an arbitrary constant C(x) that is determined by any initial or boundary conditions you may have.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili