Решить неравенство x^2 -6x +10<= |cos(pi*x/3)|
Ответы на вопрос
Для решения неравенства x^2 - 6x + 10 <= |cos(pi*x/3)|, нужно разбить его на два случая, когда выражение |cos(pi*x/3)| положительно и когда оно отрицательно. После этого решим каждый случай по отдельности.
Положительный модуль:
|cos(pi*x/3)| >= 0. Это выполняется для любого значенияx.Отрицательный модуль:
|cos(pi*x/3)| = -cos(pi*x/3). В этом случае неравенство будет иметь видx^2 - 6x + 10 <= -cos(pi*x/3).
Теперь рассмотрим каждый случай по отдельности:
|cos(pi*x/3)| >= 0: Неравенство всегда выполняется, так как модуль всегда неотрицателен. Здесь решений нет.x^2 - 6x + 10 <= -cos(pi*x/3): Теперь нужно решить это неравенство. Начнем с упрощения. Поскольку-1 <= cos(pi*x/3) <= 1, то-cos(pi*x/3) <= 1. Значит, у нас получится неравенство:x^2 - 6x + 10 <= 1Теперь перенесем все в левую часть:
x^2 - 6x + 9 <= 0Теперь это квадратное уравнение. Чтобы найти его решения, мы можем попробовать его факторизовать:
(x - 3)^2 <= 0Квадрат всегда неотрицателен, так что чтобы левая часть была меньше или равна нулю, квадрат должен равняться нулю:
x - 3 = 0x = 3
Таким образом, решение исходного неравенства это x = 3.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
