Вопрос задан 13.07.2023 в 07:09. Предмет Алгебра. Спрашивает Умиров Даниял.

1)Найти третий член геометрической прогрессии (bn), если b1=27 g= дробь одна девятая.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мустафин Раиль.

Объяснение:

b3=27+1/9(3-1)=27+1/3=9

Прошу подписаться)))

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения третьего члена геометрической прогрессии (b3) по формуле, нужно знать первый член (b1) и знаменатель прогрессии (g). Дано:

b1 = 27 g = 1/9

Общая формула для n-го члена геометрической прогрессии:

bn = b1 * g^(n-1)

Для нахождения b3 (третьего члена):

n = 3

b3 = b1 * g^(3-1) b3 = 27 * (1/9)^(2)

Чтобы упростить расчет, заметим, что (1/9) возводимое в квадрат равняется (1/81):

b3 = 27 * (1/81) b3 = 27/81 b3 = 1/3

Таким образом, третий член геометрической прогрессии равен 1/3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос