Вопрос задан 12.07.2023 в 20:41. Предмет Алгебра. Спрашивает Трафьяк Маргарита.

Решить неравенства: 1) x(x-2)(x+7) ≥ 0;2) -(x²-4)(x+5) ≤ 0;3) (9-x²)(5x+10) > 0;

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Масло Надюша.

Ответ:

вот, держи, думаю понятно


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these inequalities, we need to find the intervals of x that satisfy the given conditions. The approach is to determine the sign of each factor and then combine them to find the intervals where the inequality holds true. Let's solve each inequality step by step:

  1. x(x-2)(x+7) ≥ 0

Step 1: Find the critical points where the factors are equal to zero. x = 0, x = 2, x = -7

Step 2: Plot these critical points on the number line and pick a test point from each interval.

Test points: For x < -7, pick x = -8 For -7 < x < 0, pick x = -1 For 0 < x < 2, pick x = 1 For x > 2, pick x = 3

Step 3: Evaluate the sign of each factor and the whole expression at the test points.

Signs: x: - - + + x - 2: - - - + x + 7: - + + + Expression: + - - +

Step 4: Determine the intervals where the expression is greater than or equal to zero.

The solution is: x ∈ (-∞, -7] U [0, 2].

  1. -(x²-4)(x+5) ≤ 0

Step 1: Find the critical points where the factors are equal to zero. x² - 4 = 0 --> x = ±2 x + 5 = 0 --> x = -5

Step 2: Plot these critical points on the number line and pick a test point from each interval.

Test points: For x < -5, pick x = -6 For -5 < x < -2, pick x = -3 For -2 < x < 2, pick x = 0 For x > 2, pick x = 3

Step 3: Evaluate the sign of each factor and the whole expression at the test points.

Signs: x² - 4: + + - - x + 5: - - + + Expression: + - + -

Step 4: Determine the intervals where the expression is less than or equal to zero.

The solution is: x ∈ [-5, -2] U [2, ∞).

  1. (9-x²)(5x+10) > 0

Step 1: Find the critical points where the factors are equal to zero. 9 - x² = 0 --> x = ±3 5x + 10 = 0 --> x = -2

Step 2: Plot these critical points on the number line and pick a test point from each interval.

Test points: For x < -3, pick x = -4 For -3 < x < -2, pick x = -2.5 For -2 < x < 3, pick x = 0 For x > 3, pick x = 4

Step 3: Evaluate the sign of each factor and the whole expression at the test points.

Signs: 9 - x²: - - + + 5x + 10: 0 - + + Expression: 0 + + +

Step 4: Determine the intervals where the expression is greater than zero (exclude zero itself).

The solution is: x ∈ (-∞, -3) U (3, ∞).

In summary:

  1. x ∈ (-∞, -7] U [0, 2]
  2. x ∈ [-5, -2] U [2, ∞)
  3. x ∈ (-∞, -3) U (3, ∞)
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос