
Sin(2x+3п)sin(3x+3п/2)=0


Ответы на вопрос

Ответ:
Объяснение:
1:
0
0

To solve the trigonometric equation sin(2x + 3π)sin(3x + 3π/2) = 0, we need to find the values of x that satisfy this equation. The product of two factors is equal to zero if and only if at least one of the factors is equal to zero.
So, we have two cases to consider:
Case 1: sin(2x + 3π) = 0 To find the values of x for this case, we set the first factor equal to zero and solve for x:
2x + 3π = kπ, where k is an integer. 2x = kπ - 3π 2x = (k - 3)π x = (k - 3)π/2, where k is an integer.
Case 2: sin(3x + 3π/2) = 0 To find the values of x for this case, we set the second factor equal to zero and solve for x:
3x + 3π/2 = mπ, where m is an integer. 3x = mπ - 3π/2 3x = (2m - 3)π/2 x = (2m - 3)π/6, where m is an integer.
Now, combine the solutions from both cases:
- For Case 1, x = (k - 3)π/2, where k is an integer.
- For Case 2, x = (2m - 3)π/6, where m is an integer.
These are the general solutions to the equation sin(2x + 3π)sin(3x + 3π/2) = 0. You can also simplify and combine them further if needed.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili