
(x^2-64)^2+(x^2+5x-24)^2=0


Ответы на вопрос

, если a=0 и b=0
Ответ: -8; 3; 8



The given equation is a polynomial equation involving two terms raised to the power of 2. You want to find the solutions for x that satisfy this equation:
(x^2 - 64)^2 + (x^2 + 5x - 24)^2 = 0
To solve this equation, we can start by analyzing each term separately and then finding the values of x that make each term equal to zero.
Let's start with the first term: (x^2 - 64)^2 = 0
This term will only be equal to zero if its square, (x^2 - 64), is equal to zero. So we have: x^2 - 64 = 0
Adding 64 to both sides: x^2 = 64
Taking the square root of both sides: x = ±√64
x = ±8
Now, let's move on to the second term: (x^2 + 5x - 24)^2 = 0
Similarly, this term will be equal to zero only if its square, (x^2 + 5x - 24), is equal to zero. So we have: x^2 + 5x - 24 = 0
Factoring the quadratic equation: (x + 8)(x - 3) = 0
This gives us two possible solutions: x + 8 = 0 => x = -8 x - 3 = 0 => x = 3
So, the solutions for the given equation are x = -8, x = 8, and x = 3.
However, it's important to double-check the original equation to make sure these solutions are valid. Substituting each value of x back into the original equation should confirm whether they are indeed solutions.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili