Вопрос задан 11.07.2023 в 08:04. Предмет Алгебра. Спрашивает Иванова Анастасия.

Найдите точки пересечения прямых: x-y=1 и 2x+y=-8пожалуйста с объяснением!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецова Лиза.

Решение:

I способ - графический метод.

Чтобы найти точку пересечения прямых данной системы уравнений нужно перенести все члены каждого из уравнений в правую часть со сменой знака, а в левой части оставить переменную y.

\left \{ {{x-y=1} \atop {2x+y=-8}} \right. \Rightarrow \left \{ {{-y=1-x \: \: |\div(-1)\\} \atop {y=-8-2x}} \right. \Rightarrow \left \{ {{y=-1+x} \atop {y=-8-2x}} \right.

Теперь необходимо составить таблицу для переменных x и y, чтобы можно было подставлять значения выражений. После этого мы чертим координатную плоскость и находим точку пересечения прямых.

\: \: \: \: \: \: \: \: \:  1 \: \: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2\\\\\left[\begin{array}{ccc}x&y\\2&1\\4&3\end{array}\right] \Rightarrow \left[\begin{array}{ccc}x&y\\-1&-6\\-2&-4\end{array}\right]\\\\1. \: \: \: y= -1+x=-1+2=-\Big(1-2\Big)=-\Big(-1\Big)=1\\1. \: \: \: y=-1+x=-1+4=-\Big(1-4\Big)=-\Big(-3\Big)=3\\2. \: \: \: y=-8-2x=-8-2\cdot\Big(-1\Big)=-\Big(8-2\Big)=-6\\2. \: \: \: y=-8-2x=-8-2\cdot\Big(-2\Big)=-\Big(8-4\Big)=-4

Затем можем приступать к координатной плоскости. По координатам в таблице чертим две прямые и рассматриваем точку, в которой они пересекаются. Остальное решение дано во вложении. Это приблизительная координата точки пересечения прямых.

II способ - метод подстановки.

Чтобы найти точку пересечения прямых данной системы уравнений нужно перенести все члены одного из уравнений в правую часть со сменой знака, а в левой части оставить переменную y.

\left \{ {{x-y=1} \atop {2x+y=-8}} \right. \Rightarrow \left \{ {{x-y=1} \atop {y=-8-2x}} \right.

Теперь подставляем во первом уравнении вместо y запись второго уравнения, а затем решим новое уравнение.

x-\Big(-8-2x\Big)=1 \Rightarrow x+8+2x=1 \Rightarrow 3x=-7 \Rightarrow x=-\cfrac{7}{3}=-2\cfrac{1}{3}

Это мы нашли значение переменной x и в тоже время координату оси абсцисс для точки пересечения прямых. Теперь найдём координату оси ординат.

y=-8-2\cdot\Big(-\cfrac{7}{3}\Big)=-8+\cfrac{14}{3}=-\Big(\cfrac{24-14}{3}\Big)=-\cfrac{10}{3}=-3\cfrac{1}{3}

Запишем в ответ точную координату точки пересечения данных прямых.

Ответ:  \boxed{\bf \Big(x; \: \:  y\Big)=\Big(-2\cfrac{1}{3}; -3\cfrac{1}{3}\Big)}


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти точки пересечения прямых, нужно решить систему уравнений, состоящую из уравнений данных прямых.

Даны уравнения двух прямых:

  1. x - y = 1
  2. 2x + y = -8

Для начала, давайте решим первое уравнение относительно одной из переменных (например, y). Выразим y из первого уравнения: x - y = 1 => y = x - 1

Теперь, подставим выражение для y во второе уравнение: 2x + y = -8 2x + (x - 1) = -8 3x - 1 = -8

Теперь решим уравнение относительно x: 3x = -8 + 1 3x = -7 x = -7 / 3

Теперь, найдем значение y, подставив значение x в одно из исходных уравнений (например, в первое): y = x - 1 y = (-7 / 3) - 1

y = -7 / 3 - 3 / 3 y = (-7 - 3) / 3 y = -10 / 3

Таким образом, получаем, что точка пересечения прямых имеет координаты (-7/3, -10/3).

Так как у нас уравнения прямых линейны, у нас всегда будет ровно одна точка пересечения.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос