Вопрос задан 11.07.2023 в 02:02. Предмет Алгебра. Спрашивает Викторов Егор.

Разложи на множители: 4c2d2−36c2d3+6cd11 с решением

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Камидуллин Влад.

Ответ:

Объяснение:

4c²d²−36c²d³+6cd^11  =  2cd²(2c-18cd+3d^9)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разложим выражение на множители:

Выражение: 4c^2d^2 - 36c^2d^3 + 6cd^11

  1. Давайте вынесем наибольший общий множитель из всех слагаемых. Наибольший общий множитель для всех членов это 2cd^2:

Выражение = 2cd^2(2c - 18cd + 3d^9)

  1. Теперь разложим выражение внутри скобки: 2c - 18cd + 3d^9

  2. Для этого выражения тоже можно вынести наибольший общий множитель, который будет равен 1, так как уже нечего больше выносить:

Выражение = 1(2c - 18cd + 3d^9)

Итак, полное разложение на множители:

4c^2d^2 - 36c^2d^3 + 6cd^11 = 2cd^2(2c - 18cd + 3d^9)

Обратите внимание, что второй множитель внутри скобки (2c - 18cd + 3d^9) уже не разлагается дальше на множители с использованием целых чисел и переменных.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос