Вопрос задан 10.07.2023 в 11:42. Предмет Алгебра. Спрашивает Доскина Вика.

1) Вычислить произведение:sin 15° × cos 75°2) Вычислить:sin 45° × cos 15°​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ткалин Дмитрий.

Ответ:

1) наше уравнение упрощаем ->

1/2 * (sin(90)+sin(-60)) = 1/2(1- sqrt(3)/2) = 1/2- sqrt(3)/4

1/2- sqrt(3)/4 - ответ

2) упрощаем ->

sqrt(2)/2 * cos(45-30) = sqrt (2)/2 * (cos(45)cos(30)+sin(45)sin(30)) =

(sqrt(12)+2) / 8  = (sqrt(3)+1) / 4

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
  1. Для вычисления произведения sin 15° и cos 75°, можно воспользоваться тригонометрическими формулами:

sin(a) * cos(b) = (1/2) * [sin(a + b) + sin(a - b)]

В данном случае a = 15°, b = 75°:

sin 15° * cos 75° = (1/2) * [sin(15° + 75°) + sin(15° - 75°)]

sin(90°) = 1, а sin(-60°) = -sin(60°) = -√3/2

Таким образом,

sin 15° * cos 75° = (1/2) * [1 - √3/2] = 1/2 - √3/4

  1. Аналогично, для вычисления произведения sin 45° и cos 15°:

sin 45° * cos 15° = (1/2) * [sin(45° + 15°) + sin(45° - 15°)]

sin(60°) = √3/2, а sin(30°) = 1/2

Таким образом,

sin 45° * cos 15° = (1/2) * [√3/2 + 1/2] = √3/4 + 1/4

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос