Вопрос задан 10.07.2023 в 08:12. Предмет Алгебра. Спрашивает Мамаев Максим.

3y^2 + 7y + 4 <0; 9у^2 - 6у +1 < 0;3у^2-6у+3>0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Калаев Сергей.

Ответ:

y e ( -  \frac{4}{3}  - 1)

Это ответ на 1-ое уровнения

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these inequalities, let's work through them one by one:

  1. 3y2+7y+4<03y^2 + 7y + 4 < 0:

This quadratic inequality involves a quadratic expression 3y2+7y+43y^2 + 7y + 4. To solve it, we need to find the values of yy for which the expression is less than zero.

First, let's factor the quadratic expression: 3y2+7y+4=(3y+4)(y+1)3y^2 + 7y + 4 = (3y + 4)(y + 1).

Now, set each factor equal to zero and solve for yy: 3y+4=03y + 4 = 0 => y=4/3y = -4/3 y+1=0y + 1 = 0 => y=1y = -1

These values of yy divide the number line into three intervals: (,4/3)(-\infty, -4/3), (4/3,1)(-4/3, -1), and (1,)(-1, \infty).

Now, we can test a value from each interval in the original inequality to determine the sign of the expression in that interval. For example, testing y=2y = -2: 3(2)2+7(2)+4=1214+4=2<03(-2)^2 + 7(-2) + 4 = 12 - 14 + 4 = 2 < 0.

Since the expression is negative in the interval (4/3,1)(-4/3, -1), the solution to 3y2+7y+4<03y^2 + 7y + 4 < 0 is (4/3,1)(-4/3, -1).

  1. 9y26y+1<09y^2 - 6y + 1 < 0:

This quadratic inequality involves the quadratic expression 9y26y+19y^2 - 6y + 1. Let's solve it similarly.

First, factor the quadratic expression: 9y26y+1=(3y1)29y^2 - 6y + 1 = (3y - 1)^2.

Setting the factor equal to zero: 3y1=03y - 1 = 0 => y=1/3y = 1/3.

The solution is y=1/3y = 1/3, but since this expression is a perfect square, it is always non-negative. Therefore, there are no values of yy that satisfy 9y26y+1<09y^2 - 6y + 1 < 0.

  1. 3y26y+3>03y^2 - 6y + 3 > 0:

This quadratic inequality involves the quadratic expression 3y26y+33y^2 - 6y + 3. Let's solve it.

Divide the entire inequality by 3: y22y+1>0y^2 - 2y + 1 > 0.

Factor the quadratic expression: y22y+1=(y1)2y^2 - 2y + 1 = (y - 1)^2.

Setting the factor equal to zero: y1=0y - 1 = 0 => y=1y = 1.

The solution is y=1y = 1, but since this expression is a perfect square, it is always non-negative. Therefore, there are no values of yy that satisfy 3y26y+3>03y^2 - 6y + 3 > 0.

In summary:

  1. 3y2+7y+4<03y^2 + 7y + 4 < 0 has a solution of (4/3,1)(-4/3, -1).
  2. 9y26y+1<09y^2 - 6y + 1 < 0 has no solution.
  3. 3y26y+3>03y^2 - 6y + 3 > 0 has no solution.
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос