Вопрос задан 10.07.2023 в 07:03. Предмет Алгебра. Спрашивает Смирнова Оля.

Дана геометрическая прогрессия: 3;−15... Вычисли третий член прогрессии: b3=

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Берденова Аружан.
Пожалуйста, не забудьте оценить!)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения третьего члена геометрической прогрессии, необходимо знать первый член (a1) и знаменатель (q) прогрессии.

В данном случае, первый член прогрессии равен 3.

Для вычисления знаменателя (q) прогрессии, можно использовать формулу: q = a2 / a1,

где a2 - второй член прогрессии, а a1 - первый член прогрессии.

В данной прогрессии a2 = -15.

Подставим значения: q = -15 / 3 = -5.

Теперь мы можем использовать формулу для нахождения третьего члена прогрессии: b3 = a1 * q^(3-1).

Подставим значения: b3 = 3 * (-5)^(3-1).

Вычислим степень: b3 = 3 * (-5)^2 = 3 * 25 = 75.

Третий член данной геометрической прогрессии равен 75.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос