
Вопрос задан 09.07.2023 в 19:43.
Предмет Алгебра.
Спрашивает Владислав Владислав.
Развязать уравнение: 2x(1-8x)+(4x-1)(4x+1)=0


Ответы на вопрос

Отвечает Поляков Илья.
Ответ:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте разберемся с уравнением шаг за шагом:
Раскроем скобки:
2x(1 - 8x) + (4x - 1)(4x + 1) = 0
2x - 16x^2 + 4x^2 - 1 = 0
-12x^2 + 2x - 1 = 0
Упорядочим коэффициенты по убыванию степеней переменной:
-12x^2 + 2x - 1 = 0
-12x^2 + 2x = 1
-12x^2 + 2x - 1 = 0
Решим уравнение с помощью метода квадратного трехчлена или формулы дискриминанта. Для этого сначала вычислим дискриминант:
D = b^2 - 4ac
В данном случае a = -12, b = 2, c = -1.
D = (2)^2 - 4(-12)(-1)
D = 4 - 48
D = -44
Поскольку дискриминант отрицательный (D < 0), уравнение не имеет действительных корней. Оно имеет только комплексные корни.
Таким образом, уравнение 2x(1-8x)+(4x-1)(4x+1)=0 не может быть развязано в действительных числах. Решение будет содержать комплексные числа.


Похожие вопросы

Алгебра 232
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili