
(x+3)^2(x-2)(x+5)^3 <0


Ответы на вопрос

Ответ:
8
Объяснение:
(x^2-3x-2x+6)-(x^2-5x+2x-10)=0
x^2-3x-2x+6-x^2+5x-2x+10=0
-2x+16=0
-2x=-16 |:(-2)
x=8
ответ: 8



To solve the inequality , we can follow these steps:
Step 1: Find the critical points by setting each factor equal to zero and solving for :
Step 2: Create intervals on the number line using the critical points: .
Step 3: Test a value from each interval in the inequality to determine the sign of the expression within that interval.
Test (in the interval ):
Test (in the interval ):
Test (in the interval ):
Test (in the interval ):
Step 4: Analyze the sign of the expression within each interval:
- In the interval , the expression is negative.
- In the interval , the expression is positive.
- In the interval , the expression is negative.
- In the interval , the expression is positive.
Step 5: Determine the intervals where the expression is negative:
The expression is negative in the intervals and .
Step 6: Write the solution in interval notation:
The solution to the inequality is . This means that the inequality is satisfied when is any real number in the intervals and .


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili