Вопрос задан 09.07.2023 в 13:25. Предмет Алгебра. Спрашивает Шукало Верка.

Найдите моду, медиану и середину выборки 4,-3,2,0,3,-2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Григорьевич Лев.

Ответ:

Объяснение:

Перепишем значения по возрастанию:

-3;-2;0;2;3;4

Мода - это значение, которое повторяется наибольшее количество раз.

У нас каждое значение повторяется 1 раз, поэтому моды нет.

Медиана - это значение, стоящее в середине ряда.

У нас в середине два значения: 0 и 2, берём среднее арифметическое.

(0+2)/2 = 1

Середина выборки - это среднее арифметическое между наибольшим и наименьшим значениями выборки.

(-3+4)/2 = 0,5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти моду, медиану и середину выборки, отсортируем ее в порядке возрастания:

-3, -2, 0, 2, 3, 4

Мода - это значение, которое встречается наиболее часто в выборке. В данном случае нет однозначно выделенного значения, которое встречается чаще всего. В выборке все значения встречаются по одному разу, поэтому мода отсутствует.

Медиана - это среднее значение двух центральных элементов, если количество элементов в выборке нечетное. Если количество элементов четное, медиана - это среднее значение двух центральных элементов. В данном случае выборка содержит 6 элементов, поэтому медиана будет равна среднему значению элементов 0 и 2, то есть (0 + 2) / 2 = 1.

Середина выборки - это значение, которое находится ровно посередине, если элементы отсортированы по возрастанию. В данном случае выборка содержит 6 элементов, поэтому середина будет соответствовать элементу, стоящему на позиции (6 + 1) / 2 = 3.5. Поскольку это значение находится между 0 и 2, можно интерполировать, что середина выборки составляет (0 + 2) / 2 = 1.

Итак, мода отсутствует, медиана равна 1, а середина выборки также равна 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос