
3xy + x = 8,3xy + y = 7.


Ответы на вопрос

..........................




To solve the given system of equations:
Equation 1: 3xy + x = 8 Equation 2: 3xy + y = 7
We can solve this system by using the method of substitution.
Let's solve Equation 1 for x: 3xy + x = 8 x(3y + 1) = 8 x = 8 / (3y + 1)
Now substitute this value of x into Equation 2: 3xy + y = 7 3(8 / (3y + 1))y + y = 7 24y / (3y + 1) + y = 7
To simplify this expression, we need a common denominator. Multiply the y term by (3y + 1)/(3y + 1): (24y + y(3y + 1)) / (3y + 1) = 7 (24y + 3y^2 + y) / (3y + 1) = 7 (3y^2 + 25y) / (3y + 1) = 7
Multiply both sides of the equation by (3y + 1): 3y^2 + 25y = 7(3y + 1) 3y^2 + 25y = 21y + 7 3y^2 + 4y - 7 = 0
Now we have a quadratic equation. We can solve it by factoring, completing the square, or using the quadratic formula. Let's use the quadratic formula:
y = (-b ± √(b^2 - 4ac)) / (2a)
For our quadratic equation, a = 3, b = 4, and c = -7. Plugging in these values, we get:
y = (-4 ± √(4^2 - 4 * 3 * -7)) / (2 * 3) y = (-4 ± √(16 + 84)) / 6 y = (-4 ± √100) / 6 y = (-4 ± 10) / 6
Now we have two possible values for y:
- When y = (-4 + 10) / 6 = 6 / 6 = 1
- When y = (-4 - 10) / 6 = -14 / 6 = -7 / 3
Now substitute these values back into Equation 1 to find the corresponding values of x:
For y = 1: x = 8 / (3 * 1 + 1) = 8 / 4 = 2
For y = -7 / 3: x = 8 / (3 * (-7 / 3) + 1) = 8 / (-7 + 1) = 8 / -6 = -4 / 3
Therefore, the solution to the system of equations is: (x, y) = (2, 1) and (x, y) = (-4/3, -7/3)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili