
Допоможіть терміново! Знайдіть найбільше значення функції на проміжку [2;8].


Ответы на вопрос

Дана функция y = (x^2 + 4)/(2x-3).
Её производная равна:
y' = (2x(2x-3) - 2(X^2+4))/((2x-3)^2) = (2x^2 - 6x - 8)/((2x - 3)^2).
Приравняем производную нулю (достаточно числитель).
2x^2 - 6x - 8 = 0 или, сократив на 2: x^2 - 3x - 4 = 0.
Д = 9 + 4*4 = 25, √Д = 5. х1 =(3 - 5)/2 = -1, х2 = (3 + 5)/2 = 4.
Первый корень нас не интересует, рассмотрим второй.
x = 3 4 5
y' = -0,889 0 0,245 .
Как видим, в точке х = 4 минимум функции (в том числе и на заданном промежутке). Значение функции в этой точке равно 4.
Определим значения функции на концах заданного интервала.
х = 2 8
у = 8 5,23.
Ответ: наибольшее значение 8, наименьшее 4.



Для знаходження найбільшого значення функції на проміжку [2;8], потрібно спершу дізнатися, яка саме функція задана. Якщо у вас є функція, то надайте мені її формулу, і я зможу вам допомогти з обчисленням найбільшого значення на заданому проміжку.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili