Вопрос задан 08.07.2023 в 07:18. Предмет Алгебра. Спрашивает Восканян Арман.

Срочно!!!!!!!!! Из города А в город В, расстояние между которыми 320 кмвыехал грузовой

автомобиль. Через 3 ч после этого из города Вв город А выехал легковой автомобиль, который встретилсяс грузовым через 1 ч после начала движения. Легковой можетпроехать расстояние между городами А и В на 1 ч 20 минбыстрее, чем грузовой автомобиль. Найдите скоростькаждого автомобиля.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Леденёв Александр.

Ответ:

Грузовой автомобиль-60 км/ч, мотоцикл - 40 км/ч

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть xx - скорость грузового автомобиля, а yy - скорость легкового автомобиля.

Известно, что расстояние между городами d=320d = 320 км.

Сначала рассмотрим движение грузового автомобиля: d=xtd = x \cdot t, где tt - время движения грузового автомобиля. В данном случае t=3t = 3 часа.

Теперь рассмотрим движение легкового автомобиля: d=y(t+4)d = y \cdot (t + 4), где t+4t + 4 - время движения легкового автомобиля. Отсюда t+4=1+(t+3)t + 4 = 1 + (t + 3), так как легковой автомобиль выехал через 3 часа после грузового и встретился с ним через 1 час после начала движения.

Следовательно, у нас есть система уравнений:

xt=320y(t+4)=320y=x+43.\begin{align*} x \cdot t &= 320 \\ y \cdot (t + 4) &= 320 \\ y &= x + \frac{4}{3}. \end{align*}

Первое уравнение можно решить относительно xx: x=320tx = \frac{320}{t}.

Подставив это значение во второе уравнение:

320(t+4)t=320.\frac{320 \cdot (t + 4)}{t} = 320.

Решив это уравнение, получим: t2+4t4t480=0t^2 + 4t - 4t - 4 \cdot 80 = 0, t2320=0t^2 - 320 = 0, t2=320t^2 = 320, t=320t = \sqrt{320}, t=8t = 8.

Теперь мы можем найти скорость грузового автомобиля: x=320t=3208=40x = \frac{320}{t} = \frac{320}{8} = 40 км/ч.

А скорость легкового автомобиля: y=x+43=40+43=1243y = x + \frac{4}{3} = 40 + \frac{4}{3} = \frac{124}{3} км/ч.

Итак, скорость грузового автомобиля составляет 40 км/ч, а скорость легкового автомобиля - приблизительно 41.33 км/ч.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос