Вопрос задан 07.07.2023 в 07:42. Предмет Алгебра. Спрашивает Молдағалиева Ақмарал.

100 баллов за текстовую задачу! Текстовая задача на сплавы Даны два сплава серебра с золотом. В

первом сплаве отношение массы золота к массе серебра равнo p, во втором - q. В какой пропорции нужно взять первый и второй сплав, чтобы в результате их «смешивания» получить новый сплав, в котором отношение золота будет равно отношению серебра, если р<1, q>1 ? Решение распишите подробно, плз.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рутковская Аврора.

Распишу, как я вижу эту задачу

Пусть масса золота будет g, серебра s

Отношение массы золота к массе серебра \displaystyle \frac{g_1}{s_1}=p1 для 1-го и 2-го сплава соответственно.

Выразим золото в обоих случаях, так как оно через умножение будет (это удобнее)

g_1=s_1\cdot p; \ g_2=s_2 \cdot q

Что такое масса сплава

m=g+s

Для конкретных сплавов это:

m_1 = g_1+s_1 = s_1\cdot p + s_1 =s_1(p+1) \\ m_2 = g_2 +s_2 = s_2\cdot q + s_2 = s_2(q+1)

Далее составляется новый сплав, который составляется из первого и второго сплава, но возьмутся части от каждого. Пусть эти доли будут равны r_1, r_2 для первого и второго сплава соответственно.

Общая масса нового сплава будет равна:

m_3 = r_1\cdot m_1 + r_2 \cdot m_2 = r_1\cdot s_1(p+1) + r_2 \cdot s_2(q+1)

Причем суммарная масса золота здесь будет  r_1\cdot s_1\cdot p+r_2 \cdot s_2 \cdot q

Первое слагаемое - масса золота в новом сплаве из первого сплава, второе слагаемое - масса золота в новом сплаве из второго сплава.

И вот тут применяем условие, что эти два слагаемых равны, то есть

\displaystyle r_1\cdot s_1 \cdot p = r_2 \cdot s_2 \cdot q \Rightarrow r_1 = r_2 \cdot \frac{s_2}{s_1}\cdot \frac{q}{p}

Вспомним, какие будут массы первого и второго сплава в новом сплаве и найдем их отношение.

\displaystyle m_1 = r_1\cdot s_1 \cdot (p+1) = r_2\cdot \frac{s_2}{s_1}\cdot \frac{q}{p}\cdot s_1(p+1)=\frac{r_2\cdot s_2\cdot q(p+1)}{p}   \\ m_2=r_2\cdot s_2\cdot (q+1) \\ \frac{m_1}{m_2} = \frac{r_2\cdot s_2 \cdot q(p+1)}{p} : \frac{r_2\cdot s_2 \cdot (q+1)}{1}  = \frac{r_2 \cdot s_2 \cdot q(p+1)\cdot 1}{p \cdot r_2 \cdot s_2 \cdot (q+1)} \\ \boxed{\frac{m_1}{m_2} = \frac{p+1}{p}\cdot \frac{q}{q+1}   }

Из заданных p1 можно лишь сказать, что оба сомножителя будут больше единицы, так что и все произведение будет больше единицы, то есть масса первого сплава должна быть больше.

UPD. Дорешивал я уже задачу, где массы золота в новом сплаве равны (изначально недопонял условие)

Но нестрашно. Тоже полезно. Теперь дорешаем нашу задачу. В ней равны массы золота и серебра в новом сплаве.

Общая масса золота в новом сплаве это m_g = r_1\cdot s_1\cdot p+r_2 \cdot s_2 \cdot q

Общая масса серебра в новом сплаве это

m_s = r_1 \cdot s_1 + r_2 \cdot s_2

И известно, что эти массы равны. Логика та же: приравнять, выразить и подставить.

\displaystyle m_g = m_s \Rightarrow r_1 \cdot s_1 \cdot p + r_2 \cdot s_2 \cdot q = r_1\cdot s_1 + r_2 \cdot s_2 \Rightarrow \\ \Rightarrow r_1 \cdot s_1(p-1) = r_2 \cdot s_2(1-q) \Rightarrow r_1\cdot s_1 = \frac{r_2 \cdot s_2(1-q)}{(p-1)}

Замечательно. Только для удобства обозначим \dfrac{1-q}{p-1}=k

Вспоминаем, что

\displaystyle m_1 = r_1 \cdot s_1(p+1) = r_2\cdot s_2 \cdot k(p+1) \\ m_2 =r_2 \cdot s_2 \cdot (q+1) \Rightarrow \\ \Rightarrow \frac{m_1}{m_2} = \frac{r_2 \cdot s_2 \cdot k(p+1)}{r_2 \cdot s_2 \cdot (q+1)} = \frac{k(p+1)}{q+1} = \frac{(1-q)(p+1)}{(p-1)(q+1)}

А вот здесь как раз вполне можно использовать знание, что p1 и поменять знаки одновременно в скобках с вычитанием как в числителе, так и в знаменателе и тогда

\displaystyle \boxed{\frac{m_1}{m_2}=\frac{q-1}{q+1}\cdot \frac{1+p}{1-p}   }

Как-то так.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте предположим, что мы возьмем определенное количество массы первого сплава (скажем, xx грамм) и определенное количество массы второго сплава (скажем, yy грамм), чтобы получить новый сплав. Обозначим массу золота в первом сплаве как pxpx и массу серебра как (1p)x(1-p)x, а массу золота во втором сплаве как qyqy и массу серебра как (1q)y(1-q)y.

Суммируя массы золота и серебра в новом сплаве, получим следующие уравнения:

Масса золота в новом сплаве: px+qypx + qy Масса серебра в новом сплаве: (1p)x+(1q)y(1-p)x + (1-q)y

Условие, которое нам нужно выполнить, это отношение массы золота к массе серебра в новом сплаве, которое должно быть равно 1, так как мы хотим получить новый сплав с равными отношениями золота и серебра:

px+qy(1p)x+(1q)y=1\frac{px + qy}{(1-p)x + (1-q)y} = 1

Мы можем убрать знаменатель, так как он равен 1, и получим:

px+qy=(1p)x+(1q)ypx + qy = (1-p)x + (1-q)y

Теперь раскроем скобки:

px+qy=xpx+yqypx + qy = x - px + y - qy

Далее сгруппируем одинаковые переменные:

2px+2qy=x+y2px + 2qy = x + y

Теперь можно выразить yy через xx:

2qy=x+y2px2qy = x + y - 2px

y(2q1)=x2pxy(2q - 1) = x - 2px

y=x2px2q1y = \frac{x - 2px}{2q - 1}

Мы знаем, что q>1q > 1, поэтому 2q1>12q - 1 > 1, и знаменатель в выражении для yy будет положительным.

Таким образом, мы нашли выражение для массы второго сплава yy в зависимости от массы первого сплава xx. Теперь мы можем выбрать любое значение xx, и соответствующее значение yy будет давать нам новый сплав с требуемым отношением золота к серебру.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос