
2 cos2x - 7 sin x - 5 =0


Ответы на вопрос

Ответ:
х-5=0 cos2=7sin це правильно



Далее
Обратная подстановка
0
0

To solve the equation 2cos(2x) - 7sin(x) - 5 = 0, we can use trigonometric identities and techniques to simplify and solve for x.
First, let's make use of the double angle formula for cosine: cos(2x) = 2cos^2(x) - 1.
So, the equation becomes: 2(2cos^2(x) - 1) - 7sin(x) - 5 = 0
Distribute the 2: 4cos^2(x) - 2 - 7sin(x) - 5 = 0
Combine like terms: 4cos^2(x) - 7sin(x) - 7 = 0
Now, we can use the trigonometric identity: sin^2(x) + cos^2(x) = 1.
Rearrange the identity to solve for cos^2(x): cos^2(x) = 1 - sin^2(x).
Substitute this into the equation: 4(1 - sin^2(x)) - 7sin(x) - 7 = 0
Distribute the 4: 4 - 4sin^2(x) - 7sin(x) - 7 = 0
Combine like terms: -4sin^2(x) - 7sin(x) - 3 = 0
Now, we have a quadratic equation in terms of sin(x). Let's solve for sin(x) by factoring or using the quadratic formula:
-4sin^2(x) - 7sin(x) - 3 = 0
Multiply the equation by -1 to make it easier to work with: 4sin^2(x) + 7sin(x) + 3 = 0
Factor the quadratic equation: (4sin(x) + 3)(sin(x) + 1) = 0
Now set each factor equal to zero and solve for sin(x):
4sin(x) + 3 = 0 4sin(x) = -3 sin(x) = -3/4
sin(x) + 1 = 0 sin(x) = -1
Since the sine function has a range of -1 to 1, there are no real solutions for sin(x) = -1. Therefore, we only consider the first solution:
sin(x) = -3/4
Now, to find the values of x that satisfy this equation, we can use the arcsin (inverse sine) function:
x = arcsin(-3/4)
The arcsin function returns a value between -π/2 and π/2, so we need to consider both positive and negative angles that satisfy the equation:
x = arcsin(-3/4) ≈ -0.8481 radians or approximately -48.58 degrees
Since the sine function is periodic, we can add integer multiples of 2π to the angles to find all possible solutions. Therefore, the general solutions for x are:
x = -0.8481 + 2πn x ≈ -48.58 + 360n
where n is an integer.
So, the equation 2cos(2x) - 7sin(x) - 5 = 0 has infinitely many solutions given by the above expression for x.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili