
6x^2-5x+1>0 решите неравенство


Ответы на вопрос

Ответ:
x1=1/2 x2=1/3
Объяснение:
D=25-24=1
x1=(1+5)/12=1/2
x2=4/12=1/3



Чтобы решить данное квадратное неравенство, мы можем воспользоваться методом интервалов или графическим способом. Начнем с метода интервалов.
Найдем корни квадратного уравнения 6x^2 - 5x + 1 = 0:
Для этого воспользуемся формулой дискриминанта и квадратного корня:
Дискриминант (D) = b^2 - 4ac = (-5)^2 - 4 * 6 * 1 = 25 - 24 = 1.
Поскольку дискриминант положителен, уравнение имеет два различных действительных корня:
x1 = (-b + √D) / 2a = (5 + 1) / 12 = 1/2, x2 = (-b - √D) / 2a = (5 - 1) / 12 = 1/3.
Теперь определим, в каких интервалах неравенство 6x^2 - 5x + 1 > 0 выполняется.
Для этого построим знаковую таблицу, используя найденные корни:
Интервал 6x^2 - 5x + 1 (-∞, 1/3) + (1/3, 1/2) - (1/2, +∞) + Видим, что неравенство выполняется на интервалах (-∞, 1/3) и (1/2, +∞).
Итак, решением неравенства 6x^2 - 5x + 1 > 0 являются два интервала: (-∞, 1/3) и (1/2, +∞).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili