
Log2(3)=a log2(5)=blog4(135)=?


Ответы на вопрос

Свойства логарифмов:



Let's solve these logarithmic equations step by step:
Log2(3) = a: This equation is asking for the value of 'a' such that log base 2 of 3 equals 'a'.
We can write this equation as: 2^a = 3 Taking the logarithm base 2 of both sides: log2(2^a) = log2(3)
Since log2(2^a) simplifies to 'a', the equation becomes: a = log2(3)
Log2(5) = b: This equation is asking for the value of 'b' such that log base 2 of 5 equals 'b'.
We can write this equation as: 2^b = 5 Taking the logarithm base 2 of both sides: log2(2^b) = log2(5)
Again, simplifying the left side: b = log2(5)
Log4(135) = ?: This equation is asking for the logarithm base 4 of 135.
We can write this equation as: 4^x = 135 Taking the logarithm base 4 of both sides: log4(4^x) = log4(135)
Simplifying the left side: x = log4(135)
Now we have expressions for 'a' and 'b' in terms of logarithms:
a = log2(3) b = log2(5)
And we need to find 'x' for the third equation:
x = log4(135)
If you want a numeric approximation for these logarithms, you would need to use a calculator or a computational tool to evaluate the logarithmic values. Keep in mind that these values might not be exact integers.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili