Вопрос задан 04.07.2023 в 07:50. Предмет Алгебра. Спрашивает Макаров Максим.

Задумано двузначное число, которое делится на 5. После к нему справа приписали это же число ещё

раз. Оказалось, что получившееся четырёхзначное число делится на 9. Назови двузначное число. (​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Колпецов Алексей.

Чтобы двузначное число делилось на 5, запись числа должна оканчиваться цифрой 0 или 5. То есть по условию есть двузначное число вида \overline{a0} или \overline{b5}.

Тогда четырёхзначное число имеет вид  \overline{a0a0} или \overline{b5b5}.

Чтобы число делилось на 9, сумма цифр этого числа должна быть кратна 9.

1) Сумма цифр числа \overline{a0a0} :

a+0+a+0=2a  - получилось чётное число. Наименьшее чётное число, кратное 9, равно 18.

2a=18;\ \ \ \ \ a=9

Значит, может быть задумано число 90.

2) Сумма цифр числа \overline{b5b5} :

b+5+b+5=2(b+5)  - получилось чётное число. Наименьшее чётное число, кратное 9, равно 18.

2(b+5)=18;\ \ \ b+5=9;\ \ \ b=4

Значит, может быть задумано число 45.

Ответ: задумано число 45 или число 90.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим условие поэтапно:

  1. "Задумано двузначное число, которое делится на 5." Здесь мы ищем двузначное число, которое делится на 5. Таким числом может быть, например, 10, 15, 20, и так далее.

  2. "После к нему справа приписали это же число ещё раз." Это означает, что мы приписываем выбранное двузначное число справа, так что, например, 10 становится 1010, 15 становится 1515 и так далее.

  3. "Оказалось, что получившееся четырёхзначное число делится на 9." Здесь нужно найти число из пункта 2, которое стало четырёхзначным и делится на 9.

Самое простое двузначное число, которое соответствует этим условиям, это 45.

Проверим:

  1. Двузначное число, которое делится на 5: 45 (делится на 5).
  2. Приписали это число справа: 4545.
  3. Получившееся четырёхзначное число, которое делится на 9: 4545 (4 + 5 + 4 + 5 = 18, делятся на 9).

Итак, двузначное число, которое удовлетворяет всем условиям, это 45.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос