
|х+3|+|х+5|≤10 Help me please


Ответы на вопрос

Ответ:
[-9;1]
Объяснение:



To solve the inequality |x + 3| + |x + 5| ≤ 10, we'll need to consider different cases based on the values of x that make the absolute value expressions positive or negative. Let's break it down step by step:
When x + 3 is non-negative (x + 3 ≥ 0), and x + 5 is non-negative (x + 5 ≥ 0): In this case, both absolute value expressions are positive, so we can rewrite the inequality as: x + 3 + x + 5 ≤ 10 Simplify: 2x + 8 ≤ 10 Subtract 8 from both sides: 2x ≤ 2 Divide by 2 (since 2 is positive): x ≤ 1
When x + 3 is non-negative (x + 3 ≥ 0), and x + 5 is negative (x + 5 < 0): In this case, the absolute value of x + 5 is the negative of its actual value, so the inequality becomes: x + 3 - (x + 5) ≤ 10 Simplify: x + 3 - x - 5 ≤ 10 -2 ≤ 10 This is always true.
When x + 3 is negative (x + 3 < 0), and x + 5 is non-negative (x + 5 ≥ 0): Similar to the previous case, the absolute value of x + 3 is the negative of its actual value. So the inequality becomes: -(x + 3) + (x + 5) ≤ 10 Simplify: -x - 3 + x + 5 ≤ 10 2 ≤ 10 This is always true.
When x + 3 is negative (x + 3 < 0), and x + 5 is negative (x + 5 < 0): In this case, both absolute value expressions are negative, so we can rewrite the inequality as: -(x + 3) - (x + 5) ≤ 10 Simplify: -x - 3 - x - 5 ≤ 10 -2x - 8 ≤ 10 Divide by -2 (since -2 is negative): x + 4 ≥ -5 Subtract 4 from both sides: x ≥ -9
Now, let's summarize the solutions from each case:
- x ≤ 1
- Always true
- Always true
- x ≥ -9
So, the solutions for the inequality |x + 3| + |x + 5| ≤ 10 are: -9 ≤ x ≤ 1


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili