
Cos10xcos6x-cos^2 8x=0


Ответы на вопрос

Используем формулу "произведение косинусов":
Тогда исходное уравнение равносильно следующему
, m∈Z.



To solve the equation cos(10x)cos(6x) - cos^2(8x) = 0, we can use trigonometric identities to simplify it and find the solutions. Let's break it down step by step:
cos(10x)cos(6x) - cos^2(8x) = 0
Using the identity cos^2(x) = 1 - sin^2(x), we can rewrite the equation as:
cos(10x)cos(6x) - (1 - sin^2(8x)) = 0
Expanding the equation further:
cos(10x)cos(6x) - 1 + sin^2(8x) = 0
Now, we can use the identity sin^2(x) = 1 - cos^2(x) to replace sin^2(8x):
cos(10x)cos(6x) - 1 + (1 - cos^2(8x)) = 0
cos(10x)cos(6x) - 1 + 1 - cos^2(8x) = 0
Simplifying the equation:
cos(10x)cos(6x) - cos^2(8x) = 0
cos(10x)cos(6x) = cos^2(8x)
Using the identity cos(2x) = 2cos^2(x) - 1, we can rewrite the equation:
cos(10x)cos(6x) = (2cos^2(8x) - 1)
Now, we have an equation with similar terms on both sides. We can solve it by considering two cases:
Case 1: cos(10x) = 2cos^2(8x) - 1
Case 2: cos(6x) = 2cos^2(8x) - 1
Let's solve each case separately:
Case 1: cos(10x) = 2cos^2(8x) - 1
cos(10x) = 2(1 - sin^2(8x)) - 1
cos(10x) = 2 - 2sin^2(8x) - 1
cos(10x) = 1 - 2sin^2(8x)
Now, we have an equation in terms of cos(10x) and sin(8x). We can use the identity cos(2A) = 1 - 2sin^2(A) to rewrite it as:
cos(10x) = cos(2(8x))
Now, we equate the angles:
10x = 2(8x)
10x = 16x
10x - 16x = 0
-6x = 0
x = 0
So, one solution is x = 0.
Case 2: cos(6x) = 2cos^2(8x) - 1
cos(6x) = 2(1 - sin^2(8x)) - 1
cos(6x) = 2 - 2sin^2(8x) - 1
cos(6x) = 1 - 2sin^2(8x)
Again, we have an equation in terms of cos(6x) and sin(8x). We can use the identity cos(2A) = 1 - 2sin^2(A) to rewrite it as:
cos(6x) = cos(2(8x))
Now, we equate the angles:
6x = 2(


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili