Вопрос задан 30.06.2023 в 02:04. Предмет Алгебра. Спрашивает Архипова Анна.

Знайти область визначення функції f(x)= 5/(x-4)(x+1) срочно пожалуйста ставлю 100 балов

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иноземцев Дима.

Объяснение:

f(x)=\frac{5}{(x-4)*(x+1)}\\y=\frac{5}{(x-4)*(x+1)}\\(x-4)*(x+1)=\frac{5}{y} \\x^2-3x-4=\frac{5}{y} \\x^2-2*x*1,5+1,5^2-1,5^2-4=\frac{5}{y} \\(x-1,5)^2-2,25-4=\frac{5}{y} \\(x-1,5)^2=\frac{5}{y}+6,25\\x-1,5=\sqrt{\frac{5}{y} +6,25}  \\x=\sqrt{\frac{5}{y}+6,25 }+1,5.

></p>              <p>-∞__+__-0,8__-__0__+__+∞</p>              <p><em><strong>Ответ: y(-∞;-0,8]U(0;+∞).</strong></em></p>              </div>                                        <div class= 0 0

Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Область визначення функції f(x) визначається областю, в якій функція не має від'ємних значень в знаменнику і не ділиться на нуль. У вас є функція:

f(x) = 5 / ((x - 4)(x + 1))

Щоб знайти область визначення, спершу ми визначимо, які значення x призводять до нульового знаменника:

  1. (x - 4) не може дорівнювати нулю, тобто x ≠ 4.
  2. (x + 1) не може дорівнювати нулю, тобто x ≠ -1.

Отже, область визначення функції f(x) - це всі значення x, за винятком x = 4 і x = -1. Тобто область визначення:

D(f) = {x | x ≠ 4 і x ≠ -1}

Ця область включає всі реальні числа, окрім x = 4 і x = -1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос