Вопрос задан 29.06.2023 в 12:19. Предмет Алгебра. Спрашивает Дёмин Захар.

Сумма трех чисел, составляющих возрастающую арифметическую прогрессию, равна 21; если к этим числам

прибавить соответственно 2; 3 и 9, то образованные числа составляют геометрическую прогресию.Найти наибольшее из искомых членов прогресии​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ролёнок Настя.

Объяснение:

a₁ ;a₂; a₃ - арифметическая погрешность.

а₁+2; а₂+3; а₃+9 - геометрическая погрешность.

d>0, так как арифметическая погрешность - возрастающая.

>0).\\

Ответ:

наибольшее из искомых членов арифметической прогресии 11,

наибольшее из искомых членов геометрической прогресии 20.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть первый член арифметической прогрессии равен а, а разность прогрессии равна d. Тогда второй член будет равен (a + d), а третий член (a + 2d).

Сумма трех чисел, составляющих возрастающую арифметическую прогрессию, равна 21: a + (a + d) + (a + 2d) = 21 3a + 3d = 21 a + d = 7

Если к этим числам прибавить соответственно 2, 3 и 9, то образованные числа составляют геометрическую прогрессию: (a + 2) / (a + 1) = (a + 3) / (a + 2) = (a + 9) / (a + 3)

Рассмотрим первую пару: (a + 2) / (a + 1) = (a + 3) / (a + 2) (a + 2)(a + 2) = (a + 1)(a + 3) a^2 + 4a + 4 = a^2 + 4a + 3 1 = 0

Уравнение не имеет решений, поэтому данное условие невозможно удовлетворить.

Следовательно, данная задача не имеет решения, и искомое наибольшее число прогрессии не существует.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос