
|3-4x|=0; |7+3|=0; |2x+5|=0


Ответы на вопрос

Ответ:
скинула фото :)
Объяснение:




To solve each of these absolute value equations, you need to isolate the variable within the absolute value expression and consider both the positive and negative cases.
|3 - 4x| = 0:
Here, you have an absolute value equal to 0. The absolute value of any real number is always non-negative, and it's 0 only when the expression inside the absolute value is 0. So, set the expression inside the absolute value equal to 0:
3 - 4x = 0
Now, solve for x:
4x = 3 x = 3/4
So, the solution to this equation is x = 3/4.
|7 + 3| = 0:
Similarly, the absolute value of any real number is 0 only when the expression inside the absolute value is 0. So, you have:
7 + 3 = 0
This equation simplifies to:
10 = 0
However, this equation is not possible because 10 can never be equal to 0. Therefore, there are no solutions to this equation.
|2x + 5| = 0:
Again, set the expression inside the absolute value equal to 0:
2x + 5 = 0
Now, solve for x:
2x = -5 x = -5/2
So, the solution to this equation is x = -5/2.
In summary:
- |3 - 4x| = 0 has one solution: x = 3/4.
- |7 + 3| = 0 has no solutions.
- |2x + 5| = 0 has one solution: x = -5/2.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili