
Вопрос задан 25.06.2023 в 04:19.
Предмет Алгебра.
Спрашивает Павлова Олеся.
Обчисли наступні 3 члена геометричної прогресії, якщо b1 = 3 і знаменник дорівнює 2. b2=b3=b4=


Ответы на вопрос

Отвечает Лєщук Вікторія.
Ответ:
решение смотри на фотографии




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для знаходження наступних членів геометричної прогресії, де перший член (b1) дорівнює 3 і знаменник (q) дорівнює 2, використовуємо формулу для n-го члена геометричної прогресії:
b_n = b_1 * q^(n-1)
Де b_n - це n-й член прогресії.
b2: b2 = 3 * 2^(2-1) = 3 * 2^1 = 3 * 2 = 6
b3: b3 = 3 * 2^(3-1) = 3 * 2^2 = 3 * 4 = 12
b4: b4 = 3 * 2^(4-1) = 3 * 2^3 = 3 * 8 = 24
Отже, наступні три члени геометричної прогресії будуть: b2 = 6 b3 = 12 b4 = 24


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili