
85.6. 1) 7x - (x - 2) = 13 – x(x – 6);3) -16 + (4 + x) = x²(x + 12);


Ответы на вопрос

Ответ:
Объяснение:
1) 7x - (x - 2) = 13 – x(x – 6)
7x - x + 2 = 13 - x^2 + 6x
6x + 2 = 13 - x^2 + 6x
6x - 6x + x^2 = 13 - 2
x^2 = 11
x1 =
x2 =
2)-16 + (4 + x) = x²(x + 12)
-16 + 4 + x = x^3 + 12x
x^3 + 12x - x -4 + 16 = 0
x^3 + 11x + 12 = 0
Дальше не умею



Let's solve these two equations step by step:
- 7x - (x - 2) = 13 - x(x - 6)
First, simplify the equation by removing the parentheses:
7x - x + 2 = 13 - x(x - 6)
Combine like terms on both sides of the equation:
6x + 2 = 13 - x(x - 6)
Next, distribute the -x on the right side of the equation:
6x + 2 = 13 - (x^2 - 6x)
Now, distribute the negative sign inside the parentheses:
6x + 2 = 13 - x^2 + 6x
Rearrange the equation to isolate the quadratic term on one side:
x^2 + 6x - 6x - 2 - 13 = 0
Simplify further:
x^2 - 15 = 0
Now, we have a quadratic equation in the form of ax^2 + bx + c = 0, where a = 1, b = 0, and c = -15.
Use the quadratic formula to solve for x:
x = (-b ± √(b² - 4ac)) / (2a)
In this case, a = 1, b = 0, and c = -15:
x = (0 ± √(0² - 4(1)(-15))) / (2(1))
x = (0 ± √(60)) / 2
x = (0 ± √(4 * 15)) / 2
x = (0 ± 2√15) / 2
Now, simplify:
x = ±√15
So, the solutions to the equation are x = √15 and x = -√15.
- -16 + (4 + x) = x²(x + 12)
First, simplify the equation:
-16 + 4 + x = x²(x + 12)
Combine like terms on the left side:
-12 + x = x²(x + 12)
Now, expand the right side of the equation:
-12 + x = x³ + 12x²
Rearrange the equation to isolate the cubic term on one side:
x³ + 12x² - x - 12 = 0
Now, this is a cubic equation. Unfortunately, there isn't a simple general formula for solving cubic equations like the quadratic formula. You can use numerical methods or a calculator to approximate the solutions. One possible approach is to use numerical approximation methods like the Newton-Raphson method or graph the equation to find approximate solutions.
So, for this equation, you would need to use numerical methods or a calculator to find the solutions.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili