Вопрос задан 24.06.2023 в 09:23. Предмет Алгебра. Спрашивает Габдрахманова Ангелина.

(bn) геометрическая прогрессия , b1=81 , q=-2/3 найти b6 ПОМОГИТЕ ПОЖАЛУЙСТА

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Андронік Сніжана.

Ответ:

решение смотри на фотографии


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения шестого члена геометрической прогрессии (b6) с известным первым членом (b1 = 81) и знаменателем (q = -2/3), вы можете использовать формулу для n-го члена геометрической прогрессии:

b_n = b_1 * q^(n-1),

где b_n - это n-й член прогрессии, b_1 - первый член прогрессии, q - знаменатель прогрессии, n - номер члена прогрессии.

В вашем случае:

b6 = 81 * (-2/3)^(6-1).

b6 = 81 * (-2/3)^5.

Теперь вычислим значение:

b6 = 81 * (-32/243).

Чтобы упростить это выражение, вы можете сократить 81 и -32:

b6 = (81 * -32) / 243.

Теперь умножьте числитель:

b6 = -2592 / 243.

Далее, упростите дробь, разделив числитель и знаменатель на их наибольший общий делитель, который равен 81:

b6 = (-32) / 3.

Итак, шестой член геометрической прогрессии с данными значениями равен -32/3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос